Mga Asignatura

SchoolGPT

Careers

Buksan ang App

Mga Asignatura

Master Exponential Functions: A Comprehensive Study Guide for Senior High School

3

0

user profile picture

MG Reviewer

11/24/2025

GenMath

Genmath (exponential functions)

358

Nob 24, 2025

25 mga pahina

Master Exponential Functions: A Comprehensive Study Guide for Senior High School

user profile picture

MG Reviewer

@mg_reviewer

Ever wonder how your savings grow in a bank account... Ipakita pa

Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
1 / 25
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Understanding Exponential Functions

Think of exponential functions as the math behind things that change dramatically over time. Unlike regular functions where changes happen steadily, exponential functions show situations where growth or decay speeds up as time passes.

The basic form is f(x) = b^x where b is your base (and b > 0, b ≠ 1). When b > 1, you get explosive growth like viral videos or population booms. When 0 < b < 1, you see rapid decline like a car's value or radioactive decay.

💡 Quick Tip: If the base is bigger than 1, expect growth. If it's between 0 and 1, expect decline. This simple rule helps you instantly recognize what's happening in any exponential situation.

These functions pop up everywhere in real life - from compound interest in your savings account to predicting how fast diseases spread during epidemics.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Compound Interest Made Simple

Your money doesn't just sit there in the bank - it actually multiplies using the compound interest formula: A = P1+r/n1 + r/n^nt. This formula might look scary, but it's basically showing how your money grows when interest earns more interest.

Here's what each part means: P is your starting money, r is the interest rate (as a decimal), n is how often they calculate interest per year, and t is time in years. The magic happens because you earn interest on your interest!

The frequency matters more than you think. Annual compounding means n=1, but monthly compounding n=12n=12 gives you way more money over time. Banks love to advertise "compounded daily" because it sounds impressive and actually gives you slightly better returns.

💡 Money Tip: Even small interest rates become powerful over long periods. Starting to save early beats having a high interest rate later - time is your biggest advantage!

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Solving Real Exponential Problems

Let's break down how to tackle these problems step by step. When you see a motorcycle worth ₱150,000 losing 12% of its value each year, you're dealing with exponential decay.

First, identify what type of problem you have - is it growth, decay, or compound interest? Then pick your formula. For decay, use y = a1r1-r^x where a is your starting value and r is the decay rate.

In our motorcycle example: y = 150,000(1-0.12)^t = 150,000(0.88)^t. The key insight? Each year, the bike keeps 88% of its previous year's value, not loses a fixed amount.

💡 Problem-Solving Hack: Always convert percentages to decimals and remember that "losing 12%" means you keep 88% (1 - 0.12 = 0.88). This mental switch makes exponential problems much clearer.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Practice Problems to Master

Now you get to flex those exponential muscles with some real scenarios! These problems cover the three main types you'll encounter: population growth, depreciation, and compound interest.

Problem 1 shows doubling growth - 200 ants becoming 400 every 2 years. Problem 2 deals with a car losing 8% value yearly (classic depreciation). Problem 3 involves monthly compounding, which means n=12 in your formula.

For each problem, start by identifying the scenario type, then choose your formula, plug in the numbers, and simplify. Don't stress about getting perfect answers immediately - the pattern recognition is more important than calculation speed.

💡 Study Strategy: Try solving these without looking at the formulas first. If you get stuck, that tells you exactly what concepts need more practice. Focus your study time on those specific areas.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Exponential Decay Deep Dive

When things lose value consistently over time, you're witnessing exponential decay in action. Unlike linear decrease where you lose the same amount each period, exponential decay means you lose the same percentage each time.

The formula y = a1r1-r^x captures this perfectly. The 1r1-r part is your decay factor - it shows what percentage remains after each time period. If something loses 12% yearly, it keeps 88% of its value.

This explains why new cars lose value so quickly. A 20% yearly depreciation means the car keeps 80% of its value each year. After just 3 years, it's worth only 51% of the original price!

💡 Real-World Connection: Your smartphone, laptop, and gaming console all follow exponential decay. Understanding this helps you make smarter buying decisions and know when to upgrade vs. repair.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Exponential Function Examples

Let's see exponential functions in their simplest forms. When the base b > 1 like y = 2^x, you get explosive growth - each step doubles your previous result. These represent situations like viral social media posts or bacterial reproduction.

When 0 < b < 1 like y = (1/2)^x or y = 0.1^x, you see rapid shrinkage. These model radioactive decay, medicine leaving your bloodstream, or the value of trendy items that quickly go out of style.

The base number tells you everything about the behavior. A base of 2 means doubling, while a base of 0.5 means halving. A base of 1.1 means 10% growth, while 0.9 means 10% decline.

💡 Pattern Recognition: Train your eye to spot the base value quickly. It instantly tells you whether you're dealing with growth or decay and how dramatic the change will be.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Real-Life Applications Everywhere

Exponential functions aren't just textbook math - they're literally everywhere around you! Population growth, disease spread, compound interest, and even social media follower counts all follow exponential patterns.

The key difference between exponential and linear growth is speed. Linear growth adds the same amount each time (like climbing stairs), while exponential growth multiplies by the same factor (like a rocket taking off). The curves look completely different too!

Understanding these patterns helps you make better decisions. Should you invest now or later? How fast will that new trend spread through your school? When will your savings reach your goal amount?

💡 Life Application: Start noticing exponential patterns in your daily life. From how quickly gossip spreads to how your phone battery percentage drops, recognizing these patterns makes you mathematically smarter about the world.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Growth vs Decay Models

Master these two essential formulas and you can model almost any changing situation. Population growth uses y = a1+r1+r^x where you add the growth rate to 1. Exponential decay uses y = a1r1-r^x where you subtract the decay rate from 1.

The key insight? Growth factors are greater than 1, while decay factors are less than 1 but greater than 0. A 5% growth rate gives you a factor of 1.05, while a 5% decay rate gives you 0.95.

Both formulas start with the same structure - initial amount a, multiplied by a factor raised to the power of time x. The only difference is whether you're adding or subtracting the rate from 1.

💡 Memory Trick: Think "growth = add to get above 1" and "decay = subtract to get below 1." This simple rule prevents formula confusion during tests and real-world applications.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Half-Life Problems Made Easy

Half-life problems are just exponential decay with a twist - you know exactly when something reaches half its original amount. With 20g of radioactive substance that halves every 10 days, you can predict any future amount.

The beauty of half-life is its predictability. After 10 days: 10g remains. After 20 days: 5g. After 30 days: 2.5g. Each 10-day period cuts the amount in half, following the decay factor of 0.5.

To set up the function, use y = 20(0.5)^x/10x/10 where x is days and you divide by 10 because that's your half-life period. This formula works for any half-life situation you encounter.

💡 Science Connection: Half-life isn't just for radioactive materials. Medicine in your body, caffeine's effects, and even how long trends stay popular all follow half-life patterns. Understanding this helps you grasp timing in many situations.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Function Fundamentals Review

Before diving deeper into exponentials, let's nail down what makes a function special. A function pairs each input with exactly one output - no input can have multiple outputs, but multiple inputs can share the same output.

Exponential functions have the form f(x) = b^x where the base b must be positive and not equal to 1. Why these restrictions? Negative bases create complex numbers, and b = 1 gives you a boring horizontal line!

The variable x sits in the exponent position, which is what makes these functions so powerful. Small changes in x create massive changes in the output, explaining why exponential growth feels so dramatic in real life.

💡 Foundation Check: If you're struggling with exponential functions, make sure you're solid on basic exponent rules first. Most exponential confusion actually stems from shaky exponent fundamentals, not the function concept itself.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th
EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th


Akala namin hindi mo na itatanong...

Ano ang Knowunity AI companion?

Ang aming AI Companion ay isang AI tool na nakatuon sa mga estudyante na nag-aalok ng higit pa sa mga sagot lang. Binuo mula sa milyong Knowunity resources, nagbibigay ito ng may-kaugnayang impormasyon, personalized na study plans, quizzes, at content direkta sa chat, na umaangkop sa iyong sariling learning journey.

Saan ko mada-download ang Knowunity app?

Maaari mong i-download ang app mula sa Google Play Store at Apple App Store.

Talaga bang libre ang Knowunity?

Tama 'yan! Mag-enjoy sa libreng access sa mga study content, makipag-connect sa kapwa mga estudyante, at kumuha ng instant na tulong – lahat nasa iyong daliri lang.

Hindi mo mahanap ang hinahanap mo? Tuklasin ang iba pang mga asignatura.

Gustong-gusto kami ng mga estudyante — at magiging ganoon ka rin.

4.9/5

App Store

4.8/5

Google Play

Napakadaling gamitin at maganda ang disenyo ng app. Nahanap ko lahat ng hinahanap ko hanggang ngayon at natuto ako ng marami mula sa mga presentasyon! Tiyak na gagamitin ko ang app para sa isang takdang-aralin sa klase! At siyempre, nakakatulong din ito bilang inspirasyon.

Stefan S

gumagamit ng iOS

Sobrang ganda talaga ng app na ito. Maraming mga study notes at tulong [...]. Ang problemang subject ko ay Pranses, halimbawa, at ang app ay may maraming options para tumulong. Salamat sa app na ito, bumuti ang Pranses ko. Irerekumenda ko ito sa lahat.

Samantha Klich

Android user

Wow, talagang namangha ako. Sinubukan ko lang ang app dahil nakita ko itong ina-advertise nang maraming beses at sobrang nagulat ako. Ang app na ito ang TULONG na gusto mo para sa paaralan at higit sa lahat, nag-aalok ito ng maraming bagay, tulad ng workouts at fact sheets, na SOBRANG nakatulong sa akin.

Anna

iOS user

Pinakamagandang app sa mundo! walang masabi dahil sobrang ganda nito

Thomas R

iOS user

Napakaganda talaga. Nakakapag-review ako ng 10x mas mabuti, itong app ay mabilis na 10/10. Lubos kong inirerekomenda ito sa lahat. Pwede akong manood at maghanap ng notes. Pwede kong i-save ang mga ito sa subject folder. Pwede kong i-review anumang oras kapag bumalik ako. Kung hindi mo pa nasubukan ang app na ito, marami kang nawawala.

Basil

Android user

Ang app na ito ay nagpapalakas ng loob ko sa paghahanda sa exams, hindi lang dahil sa pagpapataas ng aking kumpiyansa sa sarili sa pamamagitan ng mga feature na nagpapahintulot sa iyo na makipag-connect sa iba at mabawasan ang pakiramdam na nag-iisa, kundi pati na rin sa paraan na nakatuon ang app sa pagpapagaan ng iyong pakiramdam. Madali itong i-navigate, masaya gamitin, at nakakatulong sa sinumang nahihirapan sa kahit anong paraan.

David K

iOS user

Sobrang galing ng app! Ilalagay ko lang ang paksa sa search bar at makakakuha na ako ng sagot kaagad. Hindi ko kailangang manood ng 10 YouTube videos para maintindihan ang isang bagay, kaya nakakatipid ako ng oras. Lubos na inirerekomenda!

Sudenaz Ocak

Android user

Sa paaralan, napakahina ko sa math pero salamat sa app, mas mahusay na ako ngayon. Lubos akong nagpapasalamat na ginawa niyo ang app na ito.

Greenlight Bonnie

Android user

napakareliable na app para tumulong at palawakin ang iyong mga ideya sa Math, English at iba pang mga related na paksa sa iyong mga gawain. gamitin mo ang app na ito kung nahihirapan ka sa mga area, susi ito para diyan. sana nag-review na ako dati. at libre rin ito kaya huwag mag-alala tungkol diyan.

Rohan U

Android user

Alam kong maraming apps gumagamit ng fake accounts para mapataas ang kanilang reviews pero ang app na ito ay deserve lahat ng papuri. Dati nakakakuha ako ng 4 sa aking English exams at ngayon nakakuha ako ng grade 7. Hindi ko pa alam ang app na ito tatlong araw bago ang exam at nakatulong ito ng SOBRA. Pakisuyong maniwala sa akin at gamitin ito dahil sigurado akong makikita mo rin ang mga pagbabago.

Xander S

iOS user

SOBRANG KAPAKI-PAKINABANG NG MGA QUIZZES AT FLASHCARDS AT SOBRANG GUSTO KO ANG SCHOOLGPT. PARANG CHATGPT DIN PERO MAS MATALINO!! TINULUNGAN DIN AKO SA AKING MASCARA PROBLEMS!! PATI NA RIN SA AKING TUNAY NA MGA SUBJECTS! DUHHH 😍😁😲🤑💗✨🎀😮

Elisha

iOS user

Grabe talaga ang app na to. Sobrang nakakaboring sakin ang pagreview pero ginagawa ng app na to na sobrang dali mag-organize ng lahat at pwede mong tanungin ang libreng ai para subukin ang sarili mo kaya sobrang buti at madali mong ma-upload ang sarili mong mga bagay. highly recommend bilang isang taong nagte-take ng mocks ngayon

Paul T

iOS user

Napakadaling gamitin at maganda ang disenyo ng app. Nahanap ko lahat ng hinahanap ko hanggang ngayon at natuto ako ng marami mula sa mga presentasyon! Tiyak na gagamitin ko ang app para sa isang takdang-aralin sa klase! At siyempre, nakakatulong din ito bilang inspirasyon.

Stefan S

gumagamit ng iOS

Sobrang ganda talaga ng app na ito. Maraming mga study notes at tulong [...]. Ang problemang subject ko ay Pranses, halimbawa, at ang app ay may maraming options para tumulong. Salamat sa app na ito, bumuti ang Pranses ko. Irerekumenda ko ito sa lahat.

Samantha Klich

Android user

Wow, talagang namangha ako. Sinubukan ko lang ang app dahil nakita ko itong ina-advertise nang maraming beses at sobrang nagulat ako. Ang app na ito ang TULONG na gusto mo para sa paaralan at higit sa lahat, nag-aalok ito ng maraming bagay, tulad ng workouts at fact sheets, na SOBRANG nakatulong sa akin.

Anna

iOS user

Pinakamagandang app sa mundo! walang masabi dahil sobrang ganda nito

Thomas R

iOS user

Napakaganda talaga. Nakakapag-review ako ng 10x mas mabuti, itong app ay mabilis na 10/10. Lubos kong inirerekomenda ito sa lahat. Pwede akong manood at maghanap ng notes. Pwede kong i-save ang mga ito sa subject folder. Pwede kong i-review anumang oras kapag bumalik ako. Kung hindi mo pa nasubukan ang app na ito, marami kang nawawala.

Basil

Android user

Ang app na ito ay nagpapalakas ng loob ko sa paghahanda sa exams, hindi lang dahil sa pagpapataas ng aking kumpiyansa sa sarili sa pamamagitan ng mga feature na nagpapahintulot sa iyo na makipag-connect sa iba at mabawasan ang pakiramdam na nag-iisa, kundi pati na rin sa paraan na nakatuon ang app sa pagpapagaan ng iyong pakiramdam. Madali itong i-navigate, masaya gamitin, at nakakatulong sa sinumang nahihirapan sa kahit anong paraan.

David K

iOS user

Sobrang galing ng app! Ilalagay ko lang ang paksa sa search bar at makakakuha na ako ng sagot kaagad. Hindi ko kailangang manood ng 10 YouTube videos para maintindihan ang isang bagay, kaya nakakatipid ako ng oras. Lubos na inirerekomenda!

Sudenaz Ocak

Android user

Sa paaralan, napakahina ko sa math pero salamat sa app, mas mahusay na ako ngayon. Lubos akong nagpapasalamat na ginawa niyo ang app na ito.

Greenlight Bonnie

Android user

napakareliable na app para tumulong at palawakin ang iyong mga ideya sa Math, English at iba pang mga related na paksa sa iyong mga gawain. gamitin mo ang app na ito kung nahihirapan ka sa mga area, susi ito para diyan. sana nag-review na ako dati. at libre rin ito kaya huwag mag-alala tungkol diyan.

Rohan U

Android user

Alam kong maraming apps gumagamit ng fake accounts para mapataas ang kanilang reviews pero ang app na ito ay deserve lahat ng papuri. Dati nakakakuha ako ng 4 sa aking English exams at ngayon nakakuha ako ng grade 7. Hindi ko pa alam ang app na ito tatlong araw bago ang exam at nakatulong ito ng SOBRA. Pakisuyong maniwala sa akin at gamitin ito dahil sigurado akong makikita mo rin ang mga pagbabago.

Xander S

iOS user

SOBRANG KAPAKI-PAKINABANG NG MGA QUIZZES AT FLASHCARDS AT SOBRANG GUSTO KO ANG SCHOOLGPT. PARANG CHATGPT DIN PERO MAS MATALINO!! TINULUNGAN DIN AKO SA AKING MASCARA PROBLEMS!! PATI NA RIN SA AKING TUNAY NA MGA SUBJECTS! DUHHH 😍😁😲🤑💗✨🎀😮

Elisha

iOS user

Grabe talaga ang app na to. Sobrang nakakaboring sakin ang pagreview pero ginagawa ng app na to na sobrang dali mag-organize ng lahat at pwede mong tanungin ang libreng ai para subukin ang sarili mo kaya sobrang buti at madali mong ma-upload ang sarili mong mga bagay. highly recommend bilang isang taong nagte-take ng mocks ngayon

Paul T

iOS user

 

GenMath

358

Nob 24, 2025

25 mga pahina

Master Exponential Functions: A Comprehensive Study Guide for Senior High School

user profile picture

MG Reviewer

@mg_reviewer

Ever wonder how your savings grow in a bank account or why your phone loses value so quickly? Exponential functions are the mathematical tools that help us model these real-world situations where things grow or shrink at rates that get... Ipakita pa

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Understanding Exponential Functions

Think of exponential functions as the math behind things that change dramatically over time. Unlike regular functions where changes happen steadily, exponential functions show situations where growth or decay speeds up as time passes.

The basic form is f(x) = b^x where b is your base (and b > 0, b ≠ 1). When b > 1, you get explosive growth like viral videos or population booms. When 0 < b < 1, you see rapid decline like a car's value or radioactive decay.

💡 Quick Tip: If the base is bigger than 1, expect growth. If it's between 0 and 1, expect decline. This simple rule helps you instantly recognize what's happening in any exponential situation.

These functions pop up everywhere in real life - from compound interest in your savings account to predicting how fast diseases spread during epidemics.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Compound Interest Made Simple

Your money doesn't just sit there in the bank - it actually multiplies using the compound interest formula: A = P1+r/n1 + r/n^nt. This formula might look scary, but it's basically showing how your money grows when interest earns more interest.

Here's what each part means: P is your starting money, r is the interest rate (as a decimal), n is how often they calculate interest per year, and t is time in years. The magic happens because you earn interest on your interest!

The frequency matters more than you think. Annual compounding means n=1, but monthly compounding n=12n=12 gives you way more money over time. Banks love to advertise "compounded daily" because it sounds impressive and actually gives you slightly better returns.

💡 Money Tip: Even small interest rates become powerful over long periods. Starting to save early beats having a high interest rate later - time is your biggest advantage!

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Solving Real Exponential Problems

Let's break down how to tackle these problems step by step. When you see a motorcycle worth ₱150,000 losing 12% of its value each year, you're dealing with exponential decay.

First, identify what type of problem you have - is it growth, decay, or compound interest? Then pick your formula. For decay, use y = a1r1-r^x where a is your starting value and r is the decay rate.

In our motorcycle example: y = 150,000(1-0.12)^t = 150,000(0.88)^t. The key insight? Each year, the bike keeps 88% of its previous year's value, not loses a fixed amount.

💡 Problem-Solving Hack: Always convert percentages to decimals and remember that "losing 12%" means you keep 88% (1 - 0.12 = 0.88). This mental switch makes exponential problems much clearer.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Practice Problems to Master

Now you get to flex those exponential muscles with some real scenarios! These problems cover the three main types you'll encounter: population growth, depreciation, and compound interest.

Problem 1 shows doubling growth - 200 ants becoming 400 every 2 years. Problem 2 deals with a car losing 8% value yearly (classic depreciation). Problem 3 involves monthly compounding, which means n=12 in your formula.

For each problem, start by identifying the scenario type, then choose your formula, plug in the numbers, and simplify. Don't stress about getting perfect answers immediately - the pattern recognition is more important than calculation speed.

💡 Study Strategy: Try solving these without looking at the formulas first. If you get stuck, that tells you exactly what concepts need more practice. Focus your study time on those specific areas.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Exponential Decay Deep Dive

When things lose value consistently over time, you're witnessing exponential decay in action. Unlike linear decrease where you lose the same amount each period, exponential decay means you lose the same percentage each time.

The formula y = a1r1-r^x captures this perfectly. The 1r1-r part is your decay factor - it shows what percentage remains after each time period. If something loses 12% yearly, it keeps 88% of its value.

This explains why new cars lose value so quickly. A 20% yearly depreciation means the car keeps 80% of its value each year. After just 3 years, it's worth only 51% of the original price!

💡 Real-World Connection: Your smartphone, laptop, and gaming console all follow exponential decay. Understanding this helps you make smarter buying decisions and know when to upgrade vs. repair.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Exponential Function Examples

Let's see exponential functions in their simplest forms. When the base b > 1 like y = 2^x, you get explosive growth - each step doubles your previous result. These represent situations like viral social media posts or bacterial reproduction.

When 0 < b < 1 like y = (1/2)^x or y = 0.1^x, you see rapid shrinkage. These model radioactive decay, medicine leaving your bloodstream, or the value of trendy items that quickly go out of style.

The base number tells you everything about the behavior. A base of 2 means doubling, while a base of 0.5 means halving. A base of 1.1 means 10% growth, while 0.9 means 10% decline.

💡 Pattern Recognition: Train your eye to spot the base value quickly. It instantly tells you whether you're dealing with growth or decay and how dramatic the change will be.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Real-Life Applications Everywhere

Exponential functions aren't just textbook math - they're literally everywhere around you! Population growth, disease spread, compound interest, and even social media follower counts all follow exponential patterns.

The key difference between exponential and linear growth is speed. Linear growth adds the same amount each time (like climbing stairs), while exponential growth multiplies by the same factor (like a rocket taking off). The curves look completely different too!

Understanding these patterns helps you make better decisions. Should you invest now or later? How fast will that new trend spread through your school? When will your savings reach your goal amount?

💡 Life Application: Start noticing exponential patterns in your daily life. From how quickly gossip spreads to how your phone battery percentage drops, recognizing these patterns makes you mathematically smarter about the world.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Growth vs Decay Models

Master these two essential formulas and you can model almost any changing situation. Population growth uses y = a1+r1+r^x where you add the growth rate to 1. Exponential decay uses y = a1r1-r^x where you subtract the decay rate from 1.

The key insight? Growth factors are greater than 1, while decay factors are less than 1 but greater than 0. A 5% growth rate gives you a factor of 1.05, while a 5% decay rate gives you 0.95.

Both formulas start with the same structure - initial amount a, multiplied by a factor raised to the power of time x. The only difference is whether you're adding or subtracting the rate from 1.

💡 Memory Trick: Think "growth = add to get above 1" and "decay = subtract to get below 1." This simple rule prevents formula confusion during tests and real-world applications.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Half-Life Problems Made Easy

Half-life problems are just exponential decay with a twist - you know exactly when something reaches half its original amount. With 20g of radioactive substance that halves every 10 days, you can predict any future amount.

The beauty of half-life is its predictability. After 10 days: 10g remains. After 20 days: 5g. After 30 days: 2.5g. Each 10-day period cuts the amount in half, following the decay factor of 0.5.

To set up the function, use y = 20(0.5)^x/10x/10 where x is days and you divide by 10 because that's your half-life period. This formula works for any half-life situation you encounter.

💡 Science Connection: Half-life isn't just for radioactive materials. Medicine in your body, caffeine's effects, and even how long trends stay popular all follow half-life patterns. Understanding this helps you grasp timing in many situations.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Function Fundamentals Review

Before diving deeper into exponentials, let's nail down what makes a function special. A function pairs each input with exactly one output - no input can have multiple outputs, but multiple inputs can share the same output.

Exponential functions have the form f(x) = b^x where the base b must be positive and not equal to 1. Why these restrictions? Negative bases create complex numbers, and b = 1 gives you a boring horizontal line!

The variable x sits in the exponent position, which is what makes these functions so powerful. Small changes in x create massive changes in the output, explaining why exponential growth feels so dramatic in real life.

💡 Foundation Check: If you're struggling with exponential functions, make sure you're solid on basic exponent rules first. Most exponential confusion actually stems from shaky exponent fundamentals, not the function concept itself.

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

EXPONENTIAL FUNCTIONS
Compound Interest can be generally modeled by $A=P(1+\frac{r}{n})^{nt}$
Note:
where,
A is the compound amount;
P is th

Mag-sign up para makita ang contentLibre ito!

Access sa lahat ng dokumento

Pagbutihin ang iyong mga grado

Sumali sa milyong mga estudyante

Sa pag-sign up, tinatanggap mo ang Terms of Service at Privacy Policy

Akala namin hindi mo na itatanong...

Ano ang Knowunity AI companion?

Ang aming AI Companion ay isang AI tool na nakatuon sa mga estudyante na nag-aalok ng higit pa sa mga sagot lang. Binuo mula sa milyong Knowunity resources, nagbibigay ito ng may-kaugnayang impormasyon, personalized na study plans, quizzes, at content direkta sa chat, na umaangkop sa iyong sariling learning journey.

Saan ko mada-download ang Knowunity app?

Maaari mong i-download ang app mula sa Google Play Store at Apple App Store.

Talaga bang libre ang Knowunity?

Tama 'yan! Mag-enjoy sa libreng access sa mga study content, makipag-connect sa kapwa mga estudyante, at kumuha ng instant na tulong – lahat nasa iyong daliri lang.

3

Smart Tools NEW

I-transform ang note na ito sa: ✓ 50+ Practice Questions ✓ Interactive Flashcards ✓ Full Mock Exam ✓ Essay Outlines

Praktis Exam
Quiz
Flashcards
Essay

Hindi mo mahanap ang hinahanap mo? Tuklasin ang iba pang mga asignatura.

Gustong-gusto kami ng mga estudyante — at magiging ganoon ka rin.

4.9/5

App Store

4.8/5

Google Play

Napakadaling gamitin at maganda ang disenyo ng app. Nahanap ko lahat ng hinahanap ko hanggang ngayon at natuto ako ng marami mula sa mga presentasyon! Tiyak na gagamitin ko ang app para sa isang takdang-aralin sa klase! At siyempre, nakakatulong din ito bilang inspirasyon.

Stefan S

gumagamit ng iOS

Sobrang ganda talaga ng app na ito. Maraming mga study notes at tulong [...]. Ang problemang subject ko ay Pranses, halimbawa, at ang app ay may maraming options para tumulong. Salamat sa app na ito, bumuti ang Pranses ko. Irerekumenda ko ito sa lahat.

Samantha Klich

Android user

Wow, talagang namangha ako. Sinubukan ko lang ang app dahil nakita ko itong ina-advertise nang maraming beses at sobrang nagulat ako. Ang app na ito ang TULONG na gusto mo para sa paaralan at higit sa lahat, nag-aalok ito ng maraming bagay, tulad ng workouts at fact sheets, na SOBRANG nakatulong sa akin.

Anna

iOS user

Pinakamagandang app sa mundo! walang masabi dahil sobrang ganda nito

Thomas R

iOS user

Napakaganda talaga. Nakakapag-review ako ng 10x mas mabuti, itong app ay mabilis na 10/10. Lubos kong inirerekomenda ito sa lahat. Pwede akong manood at maghanap ng notes. Pwede kong i-save ang mga ito sa subject folder. Pwede kong i-review anumang oras kapag bumalik ako. Kung hindi mo pa nasubukan ang app na ito, marami kang nawawala.

Basil

Android user

Ang app na ito ay nagpapalakas ng loob ko sa paghahanda sa exams, hindi lang dahil sa pagpapataas ng aking kumpiyansa sa sarili sa pamamagitan ng mga feature na nagpapahintulot sa iyo na makipag-connect sa iba at mabawasan ang pakiramdam na nag-iisa, kundi pati na rin sa paraan na nakatuon ang app sa pagpapagaan ng iyong pakiramdam. Madali itong i-navigate, masaya gamitin, at nakakatulong sa sinumang nahihirapan sa kahit anong paraan.

David K

iOS user

Sobrang galing ng app! Ilalagay ko lang ang paksa sa search bar at makakakuha na ako ng sagot kaagad. Hindi ko kailangang manood ng 10 YouTube videos para maintindihan ang isang bagay, kaya nakakatipid ako ng oras. Lubos na inirerekomenda!

Sudenaz Ocak

Android user

Sa paaralan, napakahina ko sa math pero salamat sa app, mas mahusay na ako ngayon. Lubos akong nagpapasalamat na ginawa niyo ang app na ito.

Greenlight Bonnie

Android user

napakareliable na app para tumulong at palawakin ang iyong mga ideya sa Math, English at iba pang mga related na paksa sa iyong mga gawain. gamitin mo ang app na ito kung nahihirapan ka sa mga area, susi ito para diyan. sana nag-review na ako dati. at libre rin ito kaya huwag mag-alala tungkol diyan.

Rohan U

Android user

Alam kong maraming apps gumagamit ng fake accounts para mapataas ang kanilang reviews pero ang app na ito ay deserve lahat ng papuri. Dati nakakakuha ako ng 4 sa aking English exams at ngayon nakakuha ako ng grade 7. Hindi ko pa alam ang app na ito tatlong araw bago ang exam at nakatulong ito ng SOBRA. Pakisuyong maniwala sa akin at gamitin ito dahil sigurado akong makikita mo rin ang mga pagbabago.

Xander S

iOS user

SOBRANG KAPAKI-PAKINABANG NG MGA QUIZZES AT FLASHCARDS AT SOBRANG GUSTO KO ANG SCHOOLGPT. PARANG CHATGPT DIN PERO MAS MATALINO!! TINULUNGAN DIN AKO SA AKING MASCARA PROBLEMS!! PATI NA RIN SA AKING TUNAY NA MGA SUBJECTS! DUHHH 😍😁😲🤑💗✨🎀😮

Elisha

iOS user

Grabe talaga ang app na to. Sobrang nakakaboring sakin ang pagreview pero ginagawa ng app na to na sobrang dali mag-organize ng lahat at pwede mong tanungin ang libreng ai para subukin ang sarili mo kaya sobrang buti at madali mong ma-upload ang sarili mong mga bagay. highly recommend bilang isang taong nagte-take ng mocks ngayon

Paul T

iOS user

Napakadaling gamitin at maganda ang disenyo ng app. Nahanap ko lahat ng hinahanap ko hanggang ngayon at natuto ako ng marami mula sa mga presentasyon! Tiyak na gagamitin ko ang app para sa isang takdang-aralin sa klase! At siyempre, nakakatulong din ito bilang inspirasyon.

Stefan S

gumagamit ng iOS

Sobrang ganda talaga ng app na ito. Maraming mga study notes at tulong [...]. Ang problemang subject ko ay Pranses, halimbawa, at ang app ay may maraming options para tumulong. Salamat sa app na ito, bumuti ang Pranses ko. Irerekumenda ko ito sa lahat.

Samantha Klich

Android user

Wow, talagang namangha ako. Sinubukan ko lang ang app dahil nakita ko itong ina-advertise nang maraming beses at sobrang nagulat ako. Ang app na ito ang TULONG na gusto mo para sa paaralan at higit sa lahat, nag-aalok ito ng maraming bagay, tulad ng workouts at fact sheets, na SOBRANG nakatulong sa akin.

Anna

iOS user

Pinakamagandang app sa mundo! walang masabi dahil sobrang ganda nito

Thomas R

iOS user

Napakaganda talaga. Nakakapag-review ako ng 10x mas mabuti, itong app ay mabilis na 10/10. Lubos kong inirerekomenda ito sa lahat. Pwede akong manood at maghanap ng notes. Pwede kong i-save ang mga ito sa subject folder. Pwede kong i-review anumang oras kapag bumalik ako. Kung hindi mo pa nasubukan ang app na ito, marami kang nawawala.

Basil

Android user

Ang app na ito ay nagpapalakas ng loob ko sa paghahanda sa exams, hindi lang dahil sa pagpapataas ng aking kumpiyansa sa sarili sa pamamagitan ng mga feature na nagpapahintulot sa iyo na makipag-connect sa iba at mabawasan ang pakiramdam na nag-iisa, kundi pati na rin sa paraan na nakatuon ang app sa pagpapagaan ng iyong pakiramdam. Madali itong i-navigate, masaya gamitin, at nakakatulong sa sinumang nahihirapan sa kahit anong paraan.

David K

iOS user

Sobrang galing ng app! Ilalagay ko lang ang paksa sa search bar at makakakuha na ako ng sagot kaagad. Hindi ko kailangang manood ng 10 YouTube videos para maintindihan ang isang bagay, kaya nakakatipid ako ng oras. Lubos na inirerekomenda!

Sudenaz Ocak

Android user

Sa paaralan, napakahina ko sa math pero salamat sa app, mas mahusay na ako ngayon. Lubos akong nagpapasalamat na ginawa niyo ang app na ito.

Greenlight Bonnie

Android user

napakareliable na app para tumulong at palawakin ang iyong mga ideya sa Math, English at iba pang mga related na paksa sa iyong mga gawain. gamitin mo ang app na ito kung nahihirapan ka sa mga area, susi ito para diyan. sana nag-review na ako dati. at libre rin ito kaya huwag mag-alala tungkol diyan.

Rohan U

Android user

Alam kong maraming apps gumagamit ng fake accounts para mapataas ang kanilang reviews pero ang app na ito ay deserve lahat ng papuri. Dati nakakakuha ako ng 4 sa aking English exams at ngayon nakakuha ako ng grade 7. Hindi ko pa alam ang app na ito tatlong araw bago ang exam at nakatulong ito ng SOBRA. Pakisuyong maniwala sa akin at gamitin ito dahil sigurado akong makikita mo rin ang mga pagbabago.

Xander S

iOS user

SOBRANG KAPAKI-PAKINABANG NG MGA QUIZZES AT FLASHCARDS AT SOBRANG GUSTO KO ANG SCHOOLGPT. PARANG CHATGPT DIN PERO MAS MATALINO!! TINULUNGAN DIN AKO SA AKING MASCARA PROBLEMS!! PATI NA RIN SA AKING TUNAY NA MGA SUBJECTS! DUHHH 😍😁😲🤑💗✨🎀😮

Elisha

iOS user

Grabe talaga ang app na to. Sobrang nakakaboring sakin ang pagreview pero ginagawa ng app na to na sobrang dali mag-organize ng lahat at pwede mong tanungin ang libreng ai para subukin ang sarili mo kaya sobrang buti at madali mong ma-upload ang sarili mong mga bagay. highly recommend bilang isang taong nagte-take ng mocks ngayon

Paul T

iOS user